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Part 1: Thermal Evolution, magnetic field & H2

‣ Heat transport

‣ Redox (r): H2

‣ Magnetic field

CH4H2
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Thermal evolution models

‣ Heat transport
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3D Parameterized Mantle Convection Model
Stamenković + (2018, in prep)

2D/3D Mantle Convection Model
e.g., CitcomS, GAIA, …

Stamenković + (2012, 2016)

1D Parameterized Model
Stamenković + (2012, 2016), 

Stamenković & Breuer (2014)
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‣ Heat transport
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Viscosity controls heat flow
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‣ Heat transport
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“Classic” Earth: Viscosity is η(T)
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Viscosity through melting curves
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Stamenković + (2011)

(1)

(2)

(3)

(4)

‣ Heat transport
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What has changed for the Earth with η(T,P)? 
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‣ Longer melt (~Gyr)

‣ Heat transport ‣ We can satisfy 
constraints

‣ What is the effect on 
the magnetic field?

40 60 80 100 120
Pressure in [GPa]

16

18

20

22

24

lo
g 10

(2
 [P

as
])

Viscosity for Earth

CMB (Core-Mantle-Boundary) 

0 1 2 3 4 5
Time [Gyr]

2

3

4

5

T 
[1

03 K
]

Stam
enković +

 (2012)



Copyright 2018 California Institute of Technology.
U.S. Government sponsorship acknowledged.

‣ What is the effect on 
the magnetic field?‣ Magnetic field

Impact of η(T,P) on the magnetic field
 12

‣ Heat transport
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Magnetic field: a look inside the outer core
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‣ Heat transport

‣ What is the effect on 
the dynamo?‣ Magnetic field
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Magnetic field: a look inside the outer core
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‣ Heat transport

‣ What is the effect on 
the dynamo?‣ Magnetic field

qc
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Earth’s magnetic field: A “classic” paradox?
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‣ Heat transport

‣ Magnetic field

Dynamo Index (DI)
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Heat transport & magnetic field
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‣ Heat transport

‣ What is the effect on 
the dynamo?‣ Magnetic field
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Heat transport & magnetic field
 17

‣ Heat transport

‣ What is the effect on 
the dynamo?‣ Magnetic field ‣ Longer melt (few Gyr)

‣ We can satisfy 
constraints

‣ Continuous dynamo

‣ More sluggish lower 
mantle convection
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Geophysical H2 generation

‣ Heat transport

‣ Redox (r): H2

‣ Magnetic field

H2
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Geophysical H2 generation: From field to model
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     Serpentinization 

+ H₂"+ (P,T) 

Stamenković (2015)

‣ Heat transport

‣ Redox (r): H2

‣ Magnetic field

Olivine Serpentinization(end 
members) 

3Fe₂SiO₄ + 2H₂O = 2Fe₃O4 + 3SiO₂ + 2H₂ 
2Mg₂SiO₄ + 3H₂O = Mg₃SiO₅(OH)₄ + Mg(OH)₂ 

Tester + 2007
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H2: Time variability on Earth
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Stamenković (2015); Stamenković + (20178 in prep)  

‣ Heat transport

‣ Redox (r): H2

‣ Magnetic field
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H2: Function of Fe/Mg
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H2 (mol/sec/25deg2)Stamenković (2015); Stamenković + (2018, in prep)  
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‣ Redox (r): H2

‣ Magnetic field
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H2: Testing our Earth model on Mars with TGO
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H2 (mol/sec/25deg2)

Stamenković (2015); Stamenković + (2018, in prep)  

‣ Heat transport

‣ Redox (r): H2

‣ Magnetic field
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Geophysical H2 generation

‣ Heat transport

‣ Redox (r): H2

‣ Magnetic field

H2
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Geophysical H2 generation

‣ Heat transport

‣ Redox (r): H2

‣ Magnetic field

H2

‣ Strongly time-
dependent

‣ Peak after ~1-2 Gyr

‣ Very low today

‣ Mars = testbed
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Part 1: Thermal Evolution, magnetic field & H2
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‣ Heat transport

‣ Redox (r): H2

‣ Magnetic field
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‣ Paleothermometers (Evolution).

‣ Paleomagnetic record (Dynamo).

‣ Seismology (Rheology, Dynamics).

‣ Modern Hydrogen/Methane generation 
via serpentinization, radiolysis, and 
Fischer-Tropsch type reactions - deep 
versus shallow processes.

‣ Aqua de Ney (CA), 

‣ The Cedars (CA), 

‣ Zlatibor (SERBIA), and many more.
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DATA: From Earth
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‣ Methane and hydrogen maps with 
ExoMars TGO (2017)?

‣ Local methane variation with MSL?

‣ Insight?

‣ Mars 2020?

‣ Potential missions beyond 2020? 
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DATA: From Earth to Mars
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The TRAPPIST-1 planets are our chance to 
constrain global geophysics on Earth! 

‣ Close & spectroscopically characterisable 
transiting planets.

‣ Earth-size but variable composition/
structure/insolation. 

‣ Spectroscopy with HST to infer 
atmospheric composition & volcanic 
activity (O2, H2, S, Mg, Ca,…).

‣ Io-Jupiter-like dynamo interaction to infer 
dynamo with LOFAR.

‣ We are getting ready for JWST!

DATA: From Earth to Mars to TRAPPIST-1
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Conclusions
‣ Mantle viscosity is strongly pressure-dependent. 

‣ The evolution of the Earth strongly depends on initial conditions and a 
probabilistic thermal evolution approach is needed. 

‣ Longer lifetime for dynamos and melting on Earth. 

‣ More sluggish lower mantle convection.

‣ Time- and spatially fluctuating H2 production predictable for the Earth. H2 
formation by serpentinization starts only after ~1-2 Gyr, strongly 
dependent of Fe/Mg ratio and mineralogy. 

‣ We need to focus on Earth but we must simultaneously include the 
diversity of planets to unveil the fundamental principles at work on Earth. 

‣ Mars helps us constrain the fundamental processes at work, which we could 
not do on Earth alone - ExoMars TGO, MSL, and MarsX.

‣ The TRAPPIST-1 system allows us to explore “many Earths”. 
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Earth as a planet 
Part 2: From the Evolution of Plate Tectonics to the Rise of O2
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Part 1: Thermal Evolution, magnetic field & H2

‣ Heat transport

‣ Redox (r): H2

‣ Magnetic field

CH4H2
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‣ Tectonic mode
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Part 2: Plate tectonics & O2

‣ Redox (o): O2

O2
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‣ Tectonic mode

 33

A greater picture: Global geophysics & life

‣ Heat transport

‣ Redox (r): H2

‣ Magnetic field

CH4H2

‣ Redox (o): O2

O2
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The evolution of plate tectonics

‣ Tectonic mode
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Classic steady-state stresses
 35

‣ Tectonic mode
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Different tectonic modes
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‣ Tectonic mode
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Episodic Regime
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Away from thermal equilibrium
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‣ Tectonic mode
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Away from thermal equilibrium
 38

‣ Tectonic mode
M
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Away from thermal equilibrium

Transition from an Active to a 
Stagnant Lithosphere Phase 
Initiates

Transition from a Stagnant to an 
Active Lithosphere Phase Initiates‣ Tectonic mode
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Away from thermal equilibrium

‣ Plate tectonics 
becomes less efficient 
when planet is hotter.

‣ How plate tectonics 
depends on planet 
properties (e.g., water, 
Fe/Mg, etc.) changes 
dramatically.

‣ Tectonic mode
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‣ This is opposite to the 
“classic” behavior!
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Method: “Good” or “Bad”
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Probabilistic approach
 42

Stamenković & Seager (2016), Stamenković (2018, in prep) 

‣ Tectonic mode
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From hot plumes to cool maintenance?
 43

‣ Tectonic mode Plate Yielding Efficiency
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Stamenković & Seager (2016), Stamenković (2018, in prep) 

Water distribution and plate tectonics
 44

‣ Tectonic mode
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Asthenospheric channels and plate tectonics
 45

‣ Tectonic mode
Nusselt number evolution for various depth-dependent viscosities 
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Asthenospheric channels and plate tectonics
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Channels and plate tectonics 
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‣ Tectonic mode
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The evolution of plate tectonics

‣ Tectonic mode



Copyright 2018 California Institute of Technology.
U.S. Government sponsorship acknowledged.

 48

The evolution of plate tectonics

‣ Tectonic mode

‣ Asthenospheric 
channels as drivers

‣ Bottom-up?

‣ Wet on top, dry inside 
otherwise flop

‣ Early start

‣ Maintenance self-
regulating

‣ Non-equilibrium is 
critical
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‣ Tectonic mode
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Towards oxygen

‣ Redox (o): O2

O2



Copyright 2018 California Institute of Technology.
U.S. Government sponsorship acknowledged.

Towards the rise of oxygen
 50

Stamenković + (2018, in review);  Ward, Stamenković + (2018, in review)   

origin of life

anoxygenic phototrophy

oxygenic photosynthesis

aerobic respiration

mitochondria

complex multicellularity
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time‣ Tectonic mode

‣ Redox (o): O2
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Stamenković & Seager (2016), Stamenković (2018, in prep) 

“O2 - plate tectonics” feedback?
 51

Tectonic activity & planet properties 
General 
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O2 

Subducted oxidized iron rocks 
reduce the vigor of O2 extraction. 
Allowing O2 to build up. 
 
 
 
 
 
 
 
 
 
 
 
Such a potential feedback not 
possible for stagnant lid planets. 

‣ Tectonic mode

‣ Redox (o): O2

Stamenković + (2018, in prep)  
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How to oxidize rocks? An exotic example
 52
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‣ Tectonic mode

‣ Redox (o): O2
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O2: Testing our Earth model on Mars
 53
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‣ Tectonic mode

‣ Redox (o): O2

The present spatial distribution of oxygen oases on Mars
log10([O2]aq)

2

6
5

3

4 7 8
9

1

A,B

C



Copyright 2018 California Institute of Technology.
U.S. Government sponsorship acknowledged.

 54

Stamenković + (2018, in review); Ward, Stamenković + (2018, in review)   
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O2: Testing our Earth model on Mars
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Stamenković + (2018, in review); Ward, Stamenković + (2018, in review)   

‣ Tectonic mode

‣ Redox (o): O2

O2: Testing our Earth model on Mars
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‣ Tectonic mode
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Towards oxygen

‣ Redox (o): O2

O2
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‣ Tectonic mode
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Towards oxygen

‣ Redox (o): O2

O2

‣ Positive plate tectonics-
O2 feedback?

‣ We can test on Mars 
oxidation processes

‣ Aerobic oases without 
photosynthesis?

‣ Mars is breathable 
today
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Part 2: Plate tectonics & O2
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Tectonic activity & planet properties 
General 
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Subducted oxidized iron rocks 
reduce the vigor of O2 extraction. 
Allowing O2 to build up. 
 
 
 
 
 
 
 
 
 
 
 
Such a potential feedback not 
possible for stagnant lid planets. 

‣ Tectonic mode

‣ Redox (o): O2

140 160 180 200 220 240 260 280 300
Temperature in K

10-6

10-5

10-4

10-3

10-2

10-1

100

101
[O

2] aq
 in

 m
ol

m
-3

• H2O
• Ca(ClO4)2

• Mg(ClO4)2
• NaClO4

• MgCl2
• NaCl
• MgSO4

TeuTsc

Pasteur Point

Solubility of oxygen in Martian brines and comparison with Earth

a)

b)

c) d)

Sponges

Bacteria



Copyright 2018 California Institute of Technology.
U.S. Government sponsorship acknowledged.

Conclusions
‣ Non steady-state processes critical for plate tectonics

‣ A bottom-up approach for plate tectonics? The lower mantle is driver.

‣ Early start and self-regulation.

‣ Water distribution is pivotal. Wet on top, dry inside, otherwise flop?

‣ Asthenospheric channels enhance driving stresses.

‣ We can now study oxygen-plate tectonics feedbacks and explore the 
formation of geophysics-climate-driven oxygen oases.

‣ Preliminarily results, but we find a positive feedback boosting rising O2 levels.

‣ Oxygen oases possible without photosynthesis of GOE.

‣ We need to better understand oxidation processes. 

‣ Modeling oxygen solubilities in various brines as a function of pressure and 
temperature shows surprising behavior that could allow on Earth and Mars 
oxygen oases without photosynthesis.
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Earth as a planet

Thermal Evolution

Tectonic Evolution
Dynamo Evolution

Low-Temperature  
Outgassing: H2, CH4, 

H2S

High-Temperature  
Outgassing: CO2, 

SO2/H2S, H2O

Surface chemistry 
& processes

Life
Climate
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